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Abstract. An Euclidean graph associated with a molecule is defined
by a weighted graph with adjacency matrix M = [dij], where for ij,
dij is the Euclidean distance between the nuclei i and j. In this matrix
dii can be taken as zero if all the nuclei are equivalent. Otherwise, one
may introduce different weights for distinct nuclei. Balaban introduced
some monster graphs and then Randic computed complexity indices of
them (1973, 2001). In this paper, with a simple method, we calculate the
automorphism group of some weighted graphs
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1. Introduction

Graph theory is a branch of discrete mathematics concerned with relation,
between objects. From the point of the graph theory, all organic molecular
structures can be drawn as graphs in which atoms and bonds are represented
by vertices and edges, respectively. Structural symmetry is related to the auto-
morphism group of the vertex is a subgroup of the vertex permutation group.
By symmetry we mean the automorphism group symmetry of a graph. The
symmetry of a graph, also called topological symmetry, which need not be the
same as (i.e. isomorphic to) the molecular point group symmetry. However,
it dose represent the maximal symmetry which the topological structure may
passes.
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Randic[1, 2]showed that a graph can be depicted in different ways such that
its point group symmetry or three dimensional perception may differ, but the
underlying connectivity symmetry is still the same as characterized by the au-
tomorphism group of the graph. However, the molecular symmetry depends on
the coordinates of the various nuclei which relate directly to its three dimen-
sional geometry. Although the symmetry as perceived in graph theory by the
automorphism group of the graph and the molecular group are quite different,
it showed by Balasubramanian3 that the two symmetries are connected. Au-
tomorphisms have other advantages such as in generation nuclear spin species,
NMR spectra, nuclear spin statistics in molecular spectroscopy, chirality and
chemical isomerism. There is also another important application of the auto-
morphism group of weighted graphs to fullerenes. The reader is encouraged
to consult the leading papers by Balasubramanian[3 − 11] and [12 − 17], for
background materials as well as basic computational techniques.

Longuet-Higgins[18] showed that a more desirable representation of molec-
ular symmetry is to use nuclear permutation and inversion operations result-
ing in a group called Permutation-Inversion (PI) group. Balasubramanian [3]
showed that the automorphism group of Euclidean graph of a molecule is the
Permutation-Inversion group of the molecule. The second author, in Ref. 19
showed that for each finite group H, there exists a finite regular completed
weighted graph G such that Aut(G) contains a copy of H . This shows that
the order of Aut(G) can be arbitrarily large. He also proved an algorithm to
compute the automorphism group of weighted graphs. In this paper, using this
algorithm and a GAP program [20, 21], we calculate the automorphism group
of some graphs of Balaban’s paper [12].

A simple graph G is called a weighted graph if each edge e is assigned a non-
negative number w(e), called the weight of e. An automorphism of a weighted
graph G = (V, E) is a permutation g of V with the following properties: (i)
for any u, v in V , g(u) and g(v) are adjacent if and only if u is adjacent to
v. (ii) for each e in E, w(g(e)) = w(e). The set of all automorphism of a
weighted graph G, with the operation of composition of permutations, is a
permutation group on V (G), denoted Aut(G). A non-empty subset X of V (G)
is called an orbit of G under the action of Aut(G), if there exists xX such that
X = {(x)| ∈ Aut(G)}. G is called vertex transitive or simply transitive, if it
has a unique orbit.

A permutation of the vertices of a graph belongs to its automorphism group
if it satisfies

P tAP = A, (1)

where Pt is the transpose of permutation matrix P and A is the adjacency
matrix of the graph under consideration. There are n possible permutation
matrices for a graph with n vertices. However, all of them may not satisfy the
relation (1).

We would like to bring to attention of the spectroscopy community a free
software package for group theory named GAP 21, which greatly facilitates the
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following calculations. For a given adjacency matrix A, we can write a simple
GAP program to calculate all the permutation matrices with P tAP = A. Using
this program and a similar approach as in Refs. 22-25, in the next section, we
calculate the automorphism group of two weighted graphs.

2. Results and Discuttions

The adjacency matrix A = [wij] of a weighted graph is defined as: Aij = wij ,
if ij and vertices i and j are connected by an edge with weight wij ; Aij = vi,
if i = j and the weight of the vertex i is vi, and, Aij = 0, in the case that
i 6= j and i, j are not adjacent. Note that vi can be taken as zero if all the
nuclei are equivalent. Otherwise, one may introduce different weights for nuclei
in different equivalence classes and the same weight for the nuclei in the same
equivalence classes.

Balaban [12] introduced the monster graphs G14 and G16, Figures 1 and 2.
We calculate Euclidean edges of G14 and G16 in Tables 1 and 2.

It should be mentioned that one does not have to work with exact Euclidean
distances in that a mapping of weights into a set of integers would suffice as
long as different weights are identified with different integers. In fact the auto-
morphism group of the integer-weighted graph is identical to the automorphism
group of the original Euclidean graph .To illustrate let us map the Euclidean
edge weighted for G14 as: 0.30 → 1, 0.58 → 2, 0.80 → 3, 0.95 → 4. Also, we
map the Euclidean edge weighted for G16 as: 0.20 → 1, 0.40 → 2, 0.58 → 3
and 0.74 → 4 and 0.86 → 5, 0.95 → 6 and 0.99 → 7.

Therefore we got the distance matrices A and B for G14 and G16, respec-
tively. We now write a GAP program for calculating the symmetries of graph
G14 and G16 .

3. A GAP program for symmetries of G14 and G16

A GAP program for calculating the symmetries of graph G14 is:

P := [[0, 1, 2, 3, 0, 0, 0, 3, 2, 1], [1, 0, 1, 0, 3, 4, 0, 4, 3, 0], [2, 1, 0, 1, 2, 3, 0, 0, 0, 3],

[3, 0, 1, 0, 1, 0, 3, 4, 0, 4], [0, 3, 2, 1, 0, 1, 2, 3, 0, 0], [0, 4, 3, 0, 1, 0, 1, 0, 3, 4],

[0, 0, 0, 3, 2, 1, 0, 1, 2, 3], [3, 4, 0, 4, 3, 0, 1, 0, 1, 0], [2, 3, 0, 0, 0, 3, 2, 1, 0, 1]

[1, 0, 3, 4, 0, 4, 3, 0, 1, 0]]

n := 10; i := 0; H := [ ];

t := SymmetricGroup(n);

tt := Elements(t);
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for a in tt do

x1 := PermutationMat(a, n);

x := TransposedMat(x1);

y := x ∗ P ∗ x1;

if y = P then AddSet(H, a); fi;

od;

G := Group(H);

And a GAP program for calculating the symmetries of graph G16 is also as
follows:

T := [[0, 1, 2, 0, 0, 5, 0, 0, 0, 0, 5, 0, , 0, 2, 1], [1, 0, 1, 0, 3, 0, 5, 0, 7, 0, 0, 5, 0, 0, 0]

[2, 1, 0, 1, 0, 0, 0, 5, 0, 7, 0, 0, 5, 0, 0], [0, 0, 1, 0, 1, 2, 0, 0, 0, 6, 0, 7, 0, 0, 4]

[0, 3, 0, 1, 0, 1, 0, 0, 4, 0, 0, 0, 7, 6, 4], [5, 0, 0, 2, 1, 0, 1, 2, 0, 0, 5, 0, 0, 0, 0]

[0, 5, 0, 0, 0, 1, 0, 1, 0, 3, 0, 5, 0, 7, 0], [0, 0, 5, 0, 0, 2, 1, 0, 1, 0, 0, 0, 5, 0, 7]

[0, 7, 0, 0, 4, 0, 0, 1, 0, 1, 2, 0, 0, 0, 6], [0, 0, 7, 6, 0, 0, 3, 0, 1, 0, 1, 0, 0, 4, 0]

[5, 0, 0, 0, 0, 5, 0, 0, 2, 1, 0, 1, 2, 0, 0], [0, 5, 0, 7, 0, 0, 5, 0, 0, 0, 1, 0, 1, 0, 3]

[0, 0, 5, 0, 7, 0, 0, 5, 0, 0, 2, 1, 0, 1, 0], [2, 0, 0, 0, 6, 0, 7, 0, 0, 4, 0, 0, 1, 0, 1]

[1, 0, 0, 4, 0, 0, 0, 7, 6, 0, 0, 3, 0, 1, 0]]

n := 15; i := 0; K := [];

t := SymmetricGroup(n);

tt := Elements(t);

for a in tt do

x1 := PermutationMat(a, n);

x := TransposedMat(x1);

y := x ∗ T ∗ x1;

if y = T then AddSet (K, a); fi;

od;

G := Group(K);

The program does not miss any permutation since it checks the candidate of the
given automorphism group in lexiogarphical order. The output of this program
is the automorphism group of the weighted graph G14 and G16 respectively.
After running this program for the weighted graphs G14 and G16, we calculate
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Aut(G14) and Aut(G16) as follows:

Aut(G14) = {(1), (2, 10)(3, 9)(4, 8)(5, 7), (1, 3)(4, 10)(5, 9)(6, 8), (1, 9, 7, 5, 3)(2, 10, 8, 6, 4),

(1, 5)(2, 4)(6, 10)(7, 9), (1, 7, 3, 9, 5)(2, 8, 4, 10, 6),

(1, 7)(2, 6)(3, 5)(8, 10), (1, 5, 9, 3, 7)(2, 6, 10, 4, 8),

(1, 9)(2, 8)(3, 7)(4, 6), (1, 3, 5, 7, 9)(2, 4, 6, 8, 10)}

Aut(G16) = {(1), (1, 11, 6)(2, 12, 7)(3, 13, 8)(4, 14, 9)(5, 15, 10),

(1, 6, 11)(2, 7, 12)(3, 8, 13)(4, 9, 14)(5, 10, 15)}

Using these calculations, we can see that G14 and G16, as the weighted graphs,
are not vertex transitive. In fact, G14 and G16 have exactly two and five orbits,
respectively. These orbits are as follows:

O14(1) = {1, 3, 5, 7, 9},

O14(2) = {2, 4, 6, 8, 10},

O16(1) = {1, 6, 11},

O16(2) = {2, 7, 12},

O16(3) = {3, 8, 13},

O16(4) = {4, 9, 14},

O16(6) = {5, 10, 15}.
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Figure 1. Topoligical representation of isomerizations of G14.
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Figure 2. Topoligical representation of rearrangement mode
of intramolecular isomerizations of tringonal bipyramidal
structure (G16)

Table 1. Euclidean edge weights for G14

0 0.3090 0.5878 0.8090 0 0 0 0.8090 0.5878 0.3090

0.3090 0 0.3090 0 0.8090 0.9511 0 0.9511 0.8090 0

0.5878 0.3090 0 0.3090 0.5878 0.8090 0 0 0 0.8090

0.8090 0 0.3090 0 0.3090 0 0.8090 0.9511 0 0.9511

0 0.8090 0.5878 0.3090 0 0.3090 0.5878 0.8090 0 0

0 0.9511 0.8090 0 0.3090 0 0.3090 0 0.8090 0.9511

0 0 0 0.8090 0.5878 0.3090 0 0.3090 0.5878 0.8090

0.8090 0.9511 0 0.9511 0.8090 0 0.3090 0 0.3090 0

0.5878 0.8090 0 0 0 0.8090 0.5878 0.3090 0 0.3090

0.3090 0 0.8090 0.9511 0 0.9511 0.8090 0 0.3090 0

Table 2. Euclidean edge weights for G16

0 0.20 0.40 0 0 0.86 0 0 0 0 0.86 0 0 0.40 0.20

0.20 0 0.20 0 0.58 0 0.86 0 0.99 0 0 0.86 0 0 0

0.40 0.20 0 0.20 0 0 0 0.86 0 0.99 0 0 0.86 0 0.20

0 0 0.20 0 0.20 0.40 0 0 0 0.95 0 0.99 0 0 0.74

0 0.58 0 0.20 0 0.20 0 0 0.74 0 0 0 0.99 0.95 0

0.86 0 0 0.40 0.20 0 0.20 0.40 0 0 0.86 0 0 0 0

0 0.86 0 0 0 0.20 0 0.20 0 0.58 0 0.86 0 0.99 0

0 0 0.86 0 0 0.40 0.20 0 0.20 0 0 0 0.86 0 0.99

0 0.99 0 0 0.74 0 0 0.20 0 0.20 0.40 0 0 0 0.95

0 0 0.99 0.95 0 0 0.58 0 0.20 0 0.20 0 0 0.74 0

0.86 0 0 0 0 0.86 0 0 0.40 0.20 0 0.20 0.40 0 0

0 0.86 0 0.99 0 0 0.86 0 0 0 0.20 0 0.20 0 0.58

0 0 0.86 0 0.99 0 0 0.86 0 0 0.40 0.20 0 0.20 0

0.40 0 0 0 0.95 0 0.99 0 0 0.74 0 0 0.20 0 0.20

0.20 0 0 0.74 0 0 0 0.99 0.95 0 0 0.58 0 0.20 0
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